August 23, 2022 Volume 18 Issue 32

Motion Control News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Overhung load adaptors provide load support and contamination protection

Overhung load adaptors (OHLA) provide both overhung radial and axial load support to protect electrified mobile equipment motors from heavy application loads, extending the lifetime of the motor and alleviating the cost of downtime both from maintenance costs and loss of production. They seal out dirt, grime, and other contaminants too. Zero-Max OHLAs are available in an extensive offering of standard models (including Extra-Duty options) for typical applications or customized designs.
Learn more.


Why choose electric for linear actuators?

Tolomatic has been delivering a new type of linear motion technology that is giving hydraulics a run for its money. Learn the benefits of electric linear motion systems, the iceberg principle showing total cost of ownership, critical parameters of sizing, and conversion tips.
Get this informative e-book. (No registration required)


New AC hypoid inverter-duty gearmotors

Bodine Electric Company introduces 12 new AC inverter-duty hypoid hollow shaft gearmotors. These type 42R-25H2 and 42R-30H3 drives combine an all-new AC inverter-duty, 230/460-VAC motor with two hypoid gearheads. When used with an AC inverter (VFD) control, these units deliver maintenance-free and reliable high-torque output. They are ideal for conveyors, gates, packaging, and other industrial automation equipment that demands both high torque and low power consumption from the driving gearmotor.
Learn more.


Next-gen warehouse automation: Siemens, Universal Robots, and Zivid partner up

Universal Robots, Siemens, and Zivid have created a new solution combining UR's cobot arms with Siemens' SIMATIC Robot Pick AI software and Zivid's 3D sensors to create a deep-learning picking solution for warehouse automation and intra-logistics fulfillment. It works regardless of object shape, size, opacity, or transparency and is a significant leap in solving the complex challenges faced by the logistics and e-commerce sectors.
Read the full article.


Innovative DuoDrive gear and motor unit is UL/CSA certified

The DuoDrive integrated gear unit and motor from NORD DRIVE-SYSTEMS is a compact, high-efficiency solution engineered for users in the fields of intralogistics, pharmaceutical, and the food and beverage industries. This drive combines a IE5+ synchronous motor and single-stage helical gear unit into one compact housing with a smooth, easy-to-clean surface. It has a system efficiency up to 92% and is available in two case sizes with a power range of 0.5 to 4.0 hp.
Learn more.


BLDC flat motor with high output torque and speed reduction

Portescap's 60ECF brushless DC slotted flat motor is the newest frame size to join its flat motor portfolio. This 60-mm BLDC motor features a 38.2-mm body length and an outer-rotor slotted configuration with an open-body design, allowing it to deliver improved heat management in a compact package. Combined with Portescap gearheads, it delivers extremely high output torque and speed reduction. Available in both sensored and sensorless options. A great choice for applications such as electric grippers and exoskeletons, eVTOLs, and surgical robots.
Learn more and view all the specs.


Application story: Complete gearbox and coupling assembly for actuator system

Learn how GAM engineers not only sized and selected the appropriate gear reducers and couplings required to drive two ball screws in unison using a single motor, but how they also designed the mounting adapters necessary to complete the system. One-stop shopping eliminated unnecessary components and resulted in a 15% reduction in system cost.
Read this informative GAM blog.


Next-gen motor for pump and fan applications

The next evolution of the award-winning Aircore EC motor from Infinitum is a high-efficiency system designed to power commercial and industrial applications such as HVAC fans, pumps, and data centers with less energy consumption, reduced emissions, and reduced waste. It features an integrated variable frequency drive and delivers upward of 93% system efficiency, as well as class-leading power and torque density in a low-footprint package that is 20% lighter than the previous version. Four sizes available.
Learn more.


Telescoping linear actuators for space-constrained applications

Rollon's new TLS telescoping linear actuators enable long stroke lengths with minimal closed lengths, which is especially good for applications with minimal vertical clearance. These actuators integrate seamlessly into multi-axis systems and are available in two- or three-stage versions. Equipped with a built-in automated lubrication system, the TLS Series features a synchronized drive system, requiring only a single motor to achieve motion. Four sizes (100, 230, 280, and 360) with up to 3,000-mm stroke length.
Learn more.


Competitively priced long-stroke parallel gripper

The DHPL from Festo is a new generation of pneumatic long-stroke grippers that offers a host of advantages for high-load and high-torque applications. It is interchangeable with competitive long-stroke grippers and provides the added benefits of lighter weight, higher precision, and no maintenance. It is ideal for gripping larger items, including stacking boxes, gripping shaped parts, and keeping bags open. It has high repetition accuracy due to three rugged guide rods and a rack-and-pinion design.
Learn more.


Extend your range of motion: Controllers for mini motors

FAULHABER has added another extremely compact Motion Controller without housing to its product range. The new MC3603 controller is ideal for integration in equipment manufacturing and medical tech applications. With 36 V and 3 A (peak current 9 A), it covers the power range up to 100 W and is suitable for DC motors with encoder, brushless drives, or linear motors.
Learn more.


When is a frameless brushless DC motor the right choice?

Frameless BLDC motors fit easily into small, compact machines that require high precision, high torque, and high efficiency, such as robotic applications where a mix of low weight and inertia is critical. Learn from the experts at SDP/SI how these motors can replace heavier, less efficient hydraulic components by decreasing operating and maintenance costs. These motors are also more environmentally friendly than others.
View the video.


Tiny and smart: Step motor with closed-loop control

Nanotec's new PD1-C step motor features an integrated controller and absolute encoder with closed-loop control. With a flange size of merely 28 mm (NEMA 11), this compact motor reaches a max holding torque of 18 Ncm and a peak current of 3 A. Three motor versions are available: IP20 protection, IP65 protection, and a motor with open housing that can be modified with custom connectors. Ideal for applications with space constraints, effectively reducing both wiring complexity and installation costs.
Learn more.


Closed loop steppers drive new motion control applications

According to the motion experts at Performance Motion Devices, when it comes to step motors, the drive technique called closed loop stepper is making everything old new again and driving a burst of interest in the use of two-phase step motors. It's "winning back machine designers who may have relegated step motors to the category of low cost but low performance."
Read this informative Performance Motion Devices article.


Intelligent compact drives with extended fieldbus options

The intelligent PD6 compact drives from Nanotec are now available with Profinet and EtherNet/IP. They combine motor, controller, and encoder in a space-saving package. With its 80-mm flange and a rated power of 942 W, the PD6-EB is the most powerful brushless DC motor of this product family. The stepper motor version has an 86-mm flange (NEMA 34) and a holding torque up to 10 Nm. Features include acceleration feed forward and jerk-limited ramps. Reduced installation time and wiring make the PD6 series a highly profitable choice for machine tools, packaging machines, or conveyor belts.
Learn more.


Engineers design motorless sailplanes for Mars exploration

Aerospace engineering doctoral student Adrien Bouskela (left) and aerospace and mechanical engineering professor Sergey Shkarayev hold an experimental sailplane. They hope to one day send a custom version of a similar plane to Mars. [Credit: University of Arizona College of Engineering]

 

 

 

 

Eight active spacecraft, including three operated by NASA, orbit Mars, gathering imagery of the planet's surface at a resolution of about 1 ft per pixel. Three rovers traverse the ground, mapping small areas of the planet with greater precision. But what lies in the hundreds of kilometers between the rovers and the orbiters -- including atmospheric climate processes and geological features like volcanoes and canyons -- is often of most interest to planetary scientists.

"You have this really important, critical piece in this planetary boundary layer, like in the first few kilometers above the ground," said Alexandre Kling, a research scientist in NASA's Mars Climate Modeling Center. "This is where all the exchanges between the surface and atmosphere happen. This is where the dust is picked up and sent into the atmosphere, where trace gases are mixed, where the modulation of large-scale winds by mountain-valley flows happen. And we just don't have very much data about it."

Kling is partnering with a team of University of Arizona engineers that aims to fill this data gap by designing a motorless sailplane that can soar over the Martian surface for days at a time, using only wind energy for propulsion. Equipped with flight, temperature, and gas sensors as well as cameras, the sailplanes would weigh only 11 lb each. The team details its proposal in a paper published in the journal Aerospace.

The flight of the albatross
Flight on Mars is challenging due to the planet's thin atmosphere, and this is not the first team to try addressing it. Most notably, NASA's Ingenuity is a 4-lb helicopter that landed in Mars' Jezero Crater in 2021. With miniaturized flight technology and a rotor system span of about 4 ft, it's the first device to test powered, controlled flight on another planet. But the solar-powered vehicle can fly for only three minutes at a time, and it reaches heights of just 12 m, or about 39 ft.

"These other technologies have all been very limited by energy," said the paper's first author, Adrien Bouskela, an aerospace engineering doctoral student in UArizona professor Sergey Shkarayev's Micro Air Vehicles Laboratory. "What we're proposing is just using the energy in situ. It's kind of a leap forward in those methods of extending missions. Because the main question is: How can you fly for free? How can you use the wind that's there, the thermal dynamics that are there, to avoid using solar panels and relying on batteries that need to be recharged?"

The Mars sailplanes will contain a custom-designed array of navigation sensors, as well as a camera and temperature and gas sensors to gather information about the Martian atmosphere and landscape. [Credit: University of Arizona College of Engineering]

 

 

 

 

Lightweight, low-cost, wind-powered sailplanes may be the answer. The planes, which have a wingspan of about 11 ft, will use several different flight methods, including simple static soaring when sufficient vertical winds are present. But they can also use a technique called dynamic soaring, which, like an albatross on a long journey, takes advantage of how horizontal wind speed often increases with altitude -- a phenomenon particularly common on Mars.

Dynamic soaring looks something like the S-shaped pattern skiers use to control their descent down a mountain. However, every time the sailplane changes directions, it also begins changing altitude -- and rather than slow the sailplane down, the maneuver helps it gain speed. The planes fly at a slight upward angle into the slow-moving, low-altitude wind. When they reach the faster, high-altitude wind, they turn 180 degrees and let the high-speed wind power them forward at a slight downward angle. When they start to run out of energy from the high-speed wind, they repeat the process, weaving their way forward. With this nimble maneuvering, the sailplanes can continually harvest energy from the atmosphere, flying for hours or even days at a time. This is flying for free.

"It's almost something you have to see it to believe," said paper co-author Jekan Thanga, a UArizona associate professor of aerospace and mechanical engineering.

Current rovers have mostly captured images of Mars' flat, sandy plains -- the only areas where the rovers can safely land. But the sailplanes would be able to explore new areas by taking advantage of how wind patterns shift around geologic formations such as canyons and volcanoes.

"With this platform, you could just fly around and access those really interesting, really cool places," Kling said.

Good things come in small packages
The team proposes sending the sailplanes to Mars as a secondary payload on a larger mission. Thanga is examining how to deploy the sailplanes from the spacecraft into the atmosphere. On the spacecraft, the sailplanes will be packaged in CubeSats, miniature satellites not much larger than a phonebook. Once the CubeSats are launched and the planes released, the planes would either unfold, like origami, or inflate, like high-tech pool floaties, and rigidize at their full size.

The team conducted a tethered launch of an early version of the sailplane, in which it descended slowly to Earth attached to a balloon. [Credit: University of Arizona College of Engineering]

 

 

 

 

The team is also exploring the possibility of a balloon or blimp carrying the sailplanes into the atmosphere. This would slow the sailplanes' descent and allow them to take off when wind conditions are optimal or when they approach a high-interest area. The sailplanes could even potentially redock on the balloon or blimp after a flight and go on to complete multiple missions.

Flight ends, mission continues
After landing on the Martian surface, the planes would continue to relay information about the atmosphere back to the spacecraft, essentially becoming weather stations. Meteorologists can predict weather on Earth with relative accuracy in part because there are weather stations all over our planet that form a network of information, and all the data they gather is continually fed back to predictive models. So, each Mars sailplane that retired from flying -- whether it completed its exploration as planned or something went wrong -- could become another all-important node in this network.

"If we run out of flight energy, or if our inertial sensors suddenly fail for whatever reason, we expect to then keep doing science," Bouskela said. "From the planetary science perspective, the mission continues."

The team has done extensive mathematical modeling for the sailplanes' flight patterns based on Mars climate data, and there's still more research to do about flight trajectories, potential docking systems, and more. This summer, they will test experimental planes at about 15,000 ft above sea level, where Earth's atmosphere is thinner and flight conditions are more akin to those on Mars.

"We can use the Earth as a laboratory for studying flight on Mars," Shkarayev said.

The team ultimately hopes NASA will fund the mission and allow it to "catch a ride" on a large-scale Mars mission already in development. The low-cost nature of the sailplane effort means it could come to fruition relatively quickly, Kling said, perhaps in years rather than the decades needed for a full-scale mission.

Source: University of Arizona College of Engineering

Published August 2022

Rate this article

[Engineers design motorless sailplanes for Mars exploration]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2022 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy